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Abstract
The strict relation between a certain class of multi-boson Hamiltonian systems
and the corresponding class of orthogonal polynomials is established. The
correspondence is effectively used to integrate the systems. As an explicit
example we integrate the class of multi-boson systems corresponding to q-
Hahn class polynomials.

PACS numbers: 0230I, 0230G, 0210D

Introduction

The results of this paper provide an effective tool to integrate a broad class of quantum physical
systems. Such systems play a prominent role in quantum many-body physics, nuclear physics
as well as quantum optics. More information about these models and their physical content
can be found in many papers and monographs on this subject and among others one may
consult [A-I, J1, J2, Kar1, Kar2, M-G, Odz].

This paper is devoted to a detailed study of the mathematical structures underlying multi-
boson Hamiltonian systems, whose dynamics are generated by the operators of the general
form given in (1.1).

In the first section it is shown that the reduction procedure applied to a multi-boson
Hamiltonian system leads to some interesting operator algebras AR (parametrized by a
structural function R), which generalize in a natural way Heisenberg algebra as well as slq(2)
and SUq(2) quantum algebras. It was demonstrated [Odz] that AR algebras are on one hand
strictly related to the integration of quantum systems but on the other hand, their description
in terms of coherent states leads to the connection of these algebras with the theory of basic
hypergeomeric series and orthogonal polynomials.

In section 2 we establish the explicit relation between the spectral realization of AR algebra
in L2 (R, dσ) space and representation in holomorphic function space.

According to spectral theorem, the problem of the integration of dynamical systems is
equivalent to the construction of the spectral measure dσ for the corresponding Hamiltonian.
By making certain assumptions about its form (see section 3) the problem of this construction
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4354 A Odzijewicz et al

can be explicitly solved within the framework of q-Hahn’s polynomials theory. The measure
is then uniquely determined by solving the q-difference Pearson equation.

For the sake of completeness some elementary facts of q-analysis are presented in
appendix A. Appendix B contains the proofs of some fundamental properties of the q-Hahn
class polynomials.

1. Multi-boson systems

This section is devoted to the detailed analysis of the symmetry properties of (N + 1)-boson
systems. The dynamics of these systems is assumed to be governed by the Hamiltonian operator
of the form

H = h0
(
a∗0a0, . . . , a

∗
NaN

)
+ g0

(
a∗0a0, . . . , a

∗
NaN

)
a
k0
0 . . . a

kN
N

+a−k0
0 . . . a

−kN
N g0

(
a∗0a0, . . . , a

∗
NaN

)
(1.1)

where a0, . . . , aN and a∗0 , . . . , a
∗
N are bosonic annihilation and creation operators with the

standard Heisenberg commutation relations[
ai, a

∗
j

] = δij
[
ai, aj

] = 0
[
a∗i , a

∗
j

] = 0. (1.2)

The following notational convention is assumed in (1.1):

a
ki
i =



a
ki
i for ki > 0

1 for ki = 0
(a∗i )

−ki for ki < 0.

(1.3)

The monomial

a
k0
0 . . . a

kN
N k0, . . . , kN ∈ Z (1.4)

can be thought of as an operator which describes the subsequent creation and annihilation of
clusters of the bosonic modes. The operator

g0
(
a∗0a0, . . . , a

∗
NaN

)
(1.5)

is a kind of generalization of the coupling constant. The coupling constant is replaced in our
case by a function depending on the commuting occupation number operators of the bosonic
modes. The operator

h0
(
a∗0a0, . . . , a

∗
NaN

)
(1.6)

can always be chosen as a free Hamiltonian being a weighted sum of the occupation number
operators of the elementary modes a∗0a0, . . . , a

∗
NaN

hfree
0 = ω0a

∗
0a0 + · · · + ωNa

∗
NaN . (1.7)

This paper will by no means be restricted to this free case, however. The Hamiltonian
under consideration (1.1) is an elementary ingredient of the most general Hamiltonian operator

H =
∑

k0,...,kN∈Z
gk0...kN

(
a∗0a0, . . . , a

∗
NaN

)
a
k0
0 . . . a

kN
N (1.8)

with the functions gk0...kN being connected by the following conjugation rule:[
gk0...kN

(
a∗0a0, . . . , a

∗
NaN

)]∗ = g−k0...−kN
(
a∗0a0 − k0, . . . , a

∗
NaN − kN

)
. (1.9)

The class of model Hamiltonians (1.1) corresponds to many important quantum physical
systems. Their dynamics is generated by specific operators of the form (1.1) [J1, J2, Kar1,
Kar2, A-I]. For this reason the analysis of the system (1.1) seems to be important and may
shed new light on the unsolved problems of quantum physics.
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In order to analyse the quantum system described by the Hamiltonian (1.1), it is convenient
to introduce the operators

A := g0
(
a∗0a0, . . . , a

∗
NaN

)
a
k0
0 . . . a

kN
N (1.10)

and

Ai = A∗i :=
N∑
j=0

αija
∗
j aj (1.11)

where i = 0, 1, 2, . . . , N . One assumes that the real (N + 1) × (N + 1)-matrix α = (αij )

satisfies the conditions

det α �= 0 (1.12)
N∑
j=0

αij kj = δi0. (1.13)

The operators A0, A1, . . . , AN,A and A∗ satisfy the commutation relations

[A0, A] = −A [A0, A
∗] = A∗ (1.14)

[A,Ai] = 0 = [A∗, Ai] (1.15)

for i = 1, . . . N , and

[Ai,Aj ] = 0 (1.16)

for i, j = 0, 1, . . . , N .
One also has

A∗A = ∣∣g0
(
a∗0a0 − k0, . . . , a

∗
NaN − kN

)∣∣2 Pk0

(
a∗0a0 − k0

)
. . .PkN

(
a∗NaN − kN

)
(1.17)

AA∗ = ∣∣g0
(
a∗0a0, . . . , a

∗
NaN

)∣∣2 Pk0

(
a∗0a0

)
. . .PkN

(
a∗NaN

)
(1.18)

where Pk0

(
a∗0a0

)
, . . . ,PkN

(
a∗NaN

)
are the polynomials given by

Pk

(
a∗a

)
:= aka−k =



ak
(
a∗
)k = (a∗a + 1

)
. . .
(
a∗a + k

)
for k > 0

1 for k = 0(
a∗
)−k

a−k = a∗a
(
a∗a − 1

)
. . .
(
a∗a + k + 1

)
for k < 0.

(1.19)

The operators A∗A and AA∗ are diagonals in the standard Fock basis

|n0, n1, . . . , nN 〉 = 1√
n0! . . . nN !

(
a∗0
)n0

. . .
(
a∗N
)nN |0〉 (1.20)

where (n0, n1, . . . , nN) ∈ Z
N+1
+ : = (Z+ ∪ {0})× · · · × (Z+ ∪ {0}) (N + 1 times).

Let us note that the operatorsA0, . . . , AN are unbounded. WhetherA andA∗ are bounded
or not depends on the choice of the structural function g0. All the operators (1.10), (1.11) are
defined on the common domain D spanned by the finite linear combinations

|v〉 =
∑

(i0,i1,...,iN )∈F
ci0,i1,...,iN

∣∣ni0 , ni1 , . . . , niN 〉 (1.21)

of the Fock basis elements, where F is a finite set of multi-indices.
Identifying the one-dimensional spaces C |n0, n1, . . . , nN 〉 with the elements of Z

N+1
+ we

obtain the action of A and A∗ (and their natural powers) on Z
N+1
+ . It is easy to see that the

orbits of these actions are located on one-dimensional lines which are parallel to the vector
(k0, k1, . . . , kN) ∈ Z

N+1.
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If the function g0 in (1.1) is regular and nonvanishing in all points of Z
N+1
+ , we can make

some simple but useful observations. The first one is that if ki
kj
< 0 for some i, j ∈ {0, 1, . . . , N}

then for any element |n0, n1, . . . , nN 〉 of the Fock basis there exists M ∈ N such that

AM |n0, n1, . . . , nN 〉 = 0 and (A∗)M |n0, n1, . . . , nN 〉 = 0. (1.22)

This means that the orbits of A and A∗ in Z
N+1
+ are finite. For the opposite case the orbits

contain infinitely many points.
The second observation is that A |n0, n1, . . . , nN 〉 = 0 if and only if there exists

i ∈ {0, 1, . . . , N} such that ki > 0 and ni ∈ {0, 1, . . . , ki − 1}. Hence each orbit of A and A∗

in Z
N+1
+ has exactly one vacuum (the point annihilated by A). It is then natural to introduce the

parametrization of the Fock basis in accordance with the above orbit decomposition of Z
N+1
+ .

Replacing the occupation number operators a∗0a0, . . . , a
∗
NaN by the operators

A0, A1, . . . , AN in (1.17) and (1.18) one obtains

A∗A = G (A0 − 1, A1, . . . , AN) (1.23)

AA∗ = G (A0, A1, . . . , AN) (1.24)

with the function G uniquely determined by g0, the polynomials Pk0 , . . . ,PkN and the linear
map (1.11).

The Hamiltonian (1.1) can be re-expressed in terms of (1.10) and (1.11) in the following
form:

H = H0 (A0, A1, . . . , AN) + A + A∗. (1.25)

It is clear that it admits N commuting integrals of motion A1, . . . , AN : [Ai,H ] = 0 for
i = 1, . . . , N and they also commute with the operatorA0. This maximal system of commuting
observables is diagonalized in the Fock basis and the eigenvalues of A0, A1, . . . , AN on
|n0, n1, . . . , nN 〉 are given by

λi =
N∑
j=0

αijnj i = 0, 1, . . . , N. (1.26)

The eigenvalues (λ0, λ1, . . . , λN) form a discrete convex cone !+ ⊂ R
N+1, which is spanned

by the columns of the matrix (αij ) with entries from (Z+ ∪ {0}): !+ = α
(
Z
N+1
+

)
. The

sequences (λ0, λ1, . . . , λN) ∈ !+ will be used as a new parametrization {|λ0, λ1, . . . , λN 〉} of
the Fock basis elements.

In order to integrate system (1.1) one can reduce it to the eigensubspaces Hλ1...λN ⊂ H
spanned by the eigenvectors |λ0, λ1, . . . , λN 〉 with fixed λ1, . . . , λN . Every such subspace is
invariant with respect to Ared algebra, which is generated by the operatorsA,A∗ andA0. These
operators satisfy relations (1.23), (1.24), (1.14)

[A0, A] = −A [A0, A
∗] = A∗ (1.27)

A∗A = G (A0 − 1, λ1, . . . , λN) (1.28)

AA∗ = G (A0, λ1, . . . , λN) . (1.29)

Hence one can conclude that the problem of integration of the system (1.1) amounts to
integration of the system described by the reduced Hamiltonian

Hred = H0 (A0, λ1, . . . , λN) + A + A∗ (1.30)

being an element of Ared algebra.
The orthonormal basis of the Hilbert subspace Hλ1...λN is formed by the vectors

| λ0, λ1, . . . , λN 〉 with λ0 such that (λ0, λ1, . . . , λN) ∈ !+. From (1.27)–(1.29) it follows
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that

A0 |λ0, λ1, . . . , λN 〉 = λ0 |λ0, λ1, . . . , λN 〉 (1.31)

A |λ0, λ1, . . . , λN 〉 =
√

G (λ0 − 1, λ1, . . . , λN)|λ0 − 1, λ1, . . . , λN 〉 (1.32)

A∗|λ0, λ1, . . . , λN 〉 =
√

G (λ0, λ1, . . . , λN)|λ0 + 1, λ1, . . . , λN 〉. (1.33)

Let us note here that if (λ0, λ1, . . . , λN) ∈ !+, then either (λ0 − 1, λ1, . . . , λN) ∈ !+

((λ0 + 1, λ1, . . . , λN) ∈ !+) or

A |λ0, λ1, . . . , λN 〉 = 0
(
A∗ |λ0, λ1, . . . , λN 〉 = 0

)
. (1.34)

Due to (1.28), (1.29) conditions (1.34) are equivalent to

G (λ0 − 1, λ1, . . . , λN) = 0 (G (λ0, λ1, . . . , λN) = 0) . (1.35)

Since !+ is a discrete convex cone we can easily see that the representation of Ared in
Hλ1...λN splits into irreducible components. These components are generated out of the vacuum
(or antivacuum) states |λ0, λ1, . . . , λN 〉. The vacuum states are parametrized by the solutions
λ0 of equations (1.35). In all cases under consideration the operator A0 is diagonal while the
operator A is a weighted unilateral shift operator. One does not exclude the case when the
irreducible representations generated by

∣∣λ0, λ1, . . . , λN
〉

are of finite dimension.
We can give now the following proposition.

Proposition 1.1. If the structural function G is regular then:

(1) dim Hλ1...λN <∞ if and only if there exists a pair i, j ∈ {0, 1, . . . , N} such that ki
kj
< 0.

(2) if k0 > 0 then the equation A |λ0, λ1, . . . , λN 〉 = 0 is solved by

λ0,l := l

k0
− 1

k0

N∑
j=1

β0jλj (1.36)

where βij are matrix elements of α−1, l ∈ L := {0, 1
κ
k0,

2
κ
k0, . . . ,

κ−1
κ
k0
}

and κ is the
greatest common divisor of the numbers (k0, k1, . . . , kN ). Moreover Hλ1...λN splits into
the irreducible components

Hλ1...λN =
⊕
l∈L

Hl
λ1...λN

(1.37)

where Hl
λ1,...,λN

are generated by Ared out of the states
∣∣λ0,l , λ1, . . . , λN

〉
.

(3) dim Hλ1,...,λN = ∞ if and only if dim Hl
λ1,...,λN

= ∞ for all l.

Proof. This follows immediately from the observations above. The irreducibility of Hl
λ1...λN

is a consequence of the fact that
∣∣λ0,l , λ1, . . . , λN

〉
is a unique vacuum in this space. �

The construction presented above generalizes that of [Kar1, Kar2], where models with G
as a special polynomial are considered. In these papers perturbation integration methods were
used.

As mentioned in the Introduction, our aim is to study an integrable family of
Hamiltonians (1.30) and thus, instead of the operator A0, we will use the Hermitian operator

Q := qA0−λ0,l (1.38)

where 0 < q < 1.
The relations (1.27)–(1.29) then acquire the following form in terms of the operatorsA,A∗

and Q:

QA∗ = qA∗Q, qQA = AQ (1.39)

A∗A = R (Q) (1.40)

AA∗ = R (qQ) (1.41)
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where the structural function R is given by

R (Q) = G
(

logQ

log q
+ λ0,l − 1, λ1, . . . , λN

)
. (1.42)

The function R takes positive values in all points {qn}∞n=1 and moreover R (1) = 0. Algebras
of this type were analysed in [Odz]. The reduced Hamiltonian (1.30) can be rewritten as

Hred = D (Q) + A + A∗ (1.43)

were the function D is given as

D (Q) = H0

(
logQ

log q
+ λ0,l , λ1, . . . , λN

)
(1.44)

by the use of (1.38).
Using (1.42), (1.41), (1.38), (1.29), (1.18) and (1.11) we can reconstruct the coupling

function g0 (see Hamiltonian (1.1)) out of the function R
∣∣g0

(
a∗0a0, . . . , a

∗
NaN

)∣∣2 = R(q1−λ0,l+
∑N

j=0α0j a
∗
j aj
)

Pk0

(
a∗0a0

)
. . .PkN

(
a∗NaN

) . (1.45)

The reconstruction of h0 is not possible in this case because of the lack of formulae of the
type (1.41) and (1.18).

The analysis below is restricted only to the infinite-dimensional case. The discussion of
the finite-dimensional case will be presented in a separate paper.

2. Spectral and holomorphic representations

Let AR be the operator algebra generated by the operators A, A∗ and Q. In this section we
describe two natural and, importantly from a physical point of view, representations of AR
algebra.

The first representation, which we will call a holomorphic one, is related to the coherent
states |z〉 , |z| < R (0), of the annihilation operator A ∈ AR

A |z〉 = z |z〉 . (2.1)

Let us consider the case when the orthonormal basis of the Hilbert space Hred := Hl
λ1...λN

|n〉 := ∣∣λ0,l + n, λ1, . . . , λN
〉

n ∈ N ∪ {0} (2.2)

is infinite. The vectors |n〉 are generated by the operator A∗ out of the vacuum state |0〉. The
action of the algebra generators on the vectors of this basis is

Q |n〉 = qn |n〉 (2.3)

A |n〉 =
√

R (qn) |n− 1〉 (2.4)

A∗|n〉 =
√

R (
qn+1

)|n + 1〉. (2.5)

The coherent state |z〉 is thus given by

|z〉 :=
∞∑
n=0

zn√R (q) . . .R (qn)
|n〉 (2.6)

where z ∈ D = {z ∈ C : |z| < R (0)}. The states |z〉, z ∈ D form a linearly dense subset in
Hred. Therefore, the map

I (v)
def= 〈v |z〉 (2.7)
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where v ∈ Hred and z ∈ D, is an antilinear and one-to-one map of the Hilbert space Hred into
the vector space O (D) of holomorphic functions on the disc D. It was shown in [Odz] that
the image I (Hred) is isomorphic to the Hilbert space L2O (D, dµR) containing holomorphic
functions on D which are square integrable with respect to the measure

dµR (z, z) = 1

2π

1

ExpR (x)

1

(1− q) (q; q)∞
γ

(
1

x

)
lim
a→∞

a
− log x

log q (a; q)∞
(ax; q)∞

dqx dϕ (2.8)

where z = √xeiϕ , dqx is the Jackson measure (see appendix A) and dϕ is the Lebesque
measure on the circle S1. The R-exponential function ExpR (see [Odz]) and the function γ

are defined by

ExpR (x) := 〈z|z〉 =
∞∑
n=0

xn

R (q) . . .R (qn)
(2.9)

γ (z) :=
∞∑
n=0

(
n∑

k=0

R (q; q)n−k
(q; q)k

(−1)k q(
k
2)

)
zk (2.10)

with

R(q; q)k := R(q)R(q2) . . .R(qk) (2.11)

(q; q)k := (1− q)(1− q2) . . . (1− qk) (2.12)

(x; q)∞ :=
∞∏
k=0

(
1− qkx

)
. (2.13)

Let us remark here that the existence of morphism (2.7) is equivalent to the existence of the
resolution of unity of the type∫

D

|z〉 〈z| dµR (z, z) = 1. (2.14)

By holomorphic representation of AR algebra we will understand the representation in
the Hilbert space L2O (D, dµR). Straightforward calculation shows that

Aϕ (z) = ∂Rϕ (z) (2.15)

A∗ϕ (z) = zϕ (z) (2.16)

Qϕ (z) = ϕ (qz) (2.17)

Hredϕ (z) = (D (Q) + z + ∂R) ϕ (z) (2.18)

where ϕ ∈ L2O (D, dµR) and ∂R is an R-difference operator given by

∂Rϕ (z) := R (qQ) ∂0ϕ (z) (2.19)

∂0ϕ (z) := ϕ (z)− ϕ (0)

z
(2.20)

see [Odz].
In the special case of

R (x) = 1− x

1− q
(2.21)

∂R is a q-derivative ∂q , and the standard derivative d
dz is obtained from ∂q for the limit q → 1.

The quantum algebra AR of R given by (2.21) is a q-deformation of the Heisenberg algebra.
Hence the analytic realization of AR introduced above is a natural generalization of the
Bergman–Fock–Segal representation of the Heisenberg algebra.
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The second representation of AR is related to the spectral measure of a selfadjoint extension
of the Hamiltonian (1.43). The action ofHred on the elements of the orthonormal basis {|n〉}∞n=0
is given in terms of a three-diagonal (Jacobi) matrix

Hred |n〉 =
√

R (qn) |n− 1〉 + D (qn) |n〉 +
√

R(qn+1) |n + 1〉 . (2.22)

We will call this matrix the Jacobi matrix of the operator Hred.
The operatorHred is symmetric and its domainDHred contains all finite linear combinations

of the basis elements {|n〉}∞n=0. The theory of such operators is strictly related to the theory of
orthogonal polynomials [A-G, A, Ch, Su].

Let Kω denote the deficiency subspace of Hred for ω ∈ C and Im ω �= 0

Kω := ((Hred − ω1)DHred

)⊥
. (2.23)

The deficiency indices (n+, n−)

n+ = dim Kω for Im ω > 0 (2.24)

n− = dim Kω for Im ω < 0 (2.25)

of the operator Hred are (0, 0) or (1, 1). In order to show this property, one should observe that
|v〉 ∈ Kω if and only if

H ∗red |v〉 = ω|v〉 (2.26)

where H ∗red is the adjoint of Hred. The vector

|v〉 =
∞∑
n=0

Pn (ω) |n〉 ∈ Hred (2.27)

solves (2.26) if and only if the coefficients Pn (ω) satisfy the three-term recurrence equation

ωPn (ω) =
√

R(qn)Pn−1 (ω) + D(qn)Pn (ω) +
√

R(qn+1)Pn+1 (ω) (2.28)

n ∈ N, with the initial conditions

P0 (ω) ≡ 1 P1 (ω) = ω − D (1)

R (q)
(2.29)

and
∞∑
n=0

|Pn (ω)|2 < +∞. (2.30)

Hence n+ and n− are equal to 0 or 1.
Since every Pn(ω) is a real polynomial of degree n of the complex variable ω one has

n+ = n−.
Following [A] we will call the Jacobi matrix of Hred to be of type D or C if the deficiency

indices of Hred are (0, 0) or (1, 1), respectively.

Proposition 2.1. (i) If
∞∑
n=0

1√R (qn)
= +∞ (2.31)

then the operator Hred has deficiency indices (0, 0). This is equivalent to its essential
selfadjointness.

(ii) If the set of the coherent states |z〉 of the annihilation operator A is parametrized by the
disc D of finite radius R (0) < +∞ then Hred is essentially selfadjoint.

(iii) If the deficiency indices of Hred are (1, 1) then the coherent states |z〉 of A exist for any
z ∈ C.
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Proof.

(i) Let {Qn (ω)}∞n=0 be another solution of the recurrence relation (2.28) with the initial
conditions

Q0(ω) ≡ 0 Q1(ω) ≡ 1√R (q)
. (2.32)

Then one has

Pk−1(ω)Qk(ω)− Pk (ω)Qk−1(ω) = 1√
R (

qk
) (2.33)

where k ∈ N. Applying the Schwartz inequality to (2.33), one finds
∞∑
n=1

1√R (qn)
� 2

( ∞∑
n=0

|Pn(ω)|2
)( ∞∑

n=0

|Qn(ω)|2
)
. (2.34)

Moreover one can prove (see [A]) that if {Pn (ω)}∞n=0 satisfies (2.30), then {Qn(ω)}∞n=0
also satisfies it. Therefore

∑∞
n=0

1√R(qn)
< +∞, which contradicts (2.31). Thus, one has

∞∑
n=0

|Pn(ω)|2 = ∞ (2.35)

meaning that n+ = n− = 0. We apply Th.VIII.3 from [R-S] vol 1.
(ii) If R (0) < +∞ then condition (2.35) follows immediately from (2.31) and statement

(ii) follows from statement (i).
(iii) One proves it ad absurdum using the previous statement.

�

Let Ĥred be some selfadjoint extension of Hred. In the case of type C such extensions are
parametrized by points of S1, see [R-S], whereas in the case of type D the extension is unique.
Let dER,D(ω) be the spectral measure of Ĥred.

By the spectral representation of AR we will call the representation in the space
L2
(
R, dσR,D

)
where the measure dσR,D is given by

dσR,D(ω) := 〈0|dER,D(ω)0
〉

(2.36)

and the operator Ĥred acts by multiplication with the identity function on R. Let UPN :
Hred −→ L2

(
R, dσR,D

)
denote the intertwining operator for these two representations. Since

the polynomials {Pn(ω)}∞n=0 form an orthonormal basis in L2
(
R, dσR,D

)
, it is convenient to

write the intertwining operator using the physical notation of Dirac

UPN =
∞∑
n=0

Pn(ω)⊗ 〈n| . (2.37)

The convergence here is understood in the sense of weak topology. The relation of the
holomorphic representation and the spectral representation is given by the isomorphism of
Hilbert spaces

UPZ : L2O (D, dµR)→ L2
(
R, dσR,D

)
(2.38)

and UPZ which can be written as

UPZ =
∞∑
n=0

Pn (ω)⊗ zn√R (q) . . .R (qn)
(2.39)
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where
{

zn√R(q)...R(qn)

}∞
n=0

is an orthonormal basis in L2O (D, dµR). Similarly let

UZN : Hred −→ L2 (D, dµR) (2.40)

be given by

UZN :=
∞∑
n=0

zn√R (q) . . .R (qn)
⊗ 〈n| . (2.41)

We thus get the following commutative diagram of Hilbert space isomorphisms:

Hred

UPZ↙
UZN↘ (2.42)

L2
(
R, dσR,D

) UPN←− L2O (D, dµR) .

If the series

V (ω, z) :=
∞∑
n=0

Pn(ω)
zn√R (q) . . .R (qn)

(2.43)

is pointwise convergent for all ω ∈ [a, b] and z ∈ D, the isomorphism UPZ can be represented
as the integral transform

(UPZϕ) (ω) =
∫

D

V (ω, z) ϕ (z) dµR (z, z) . (2.44)

The kernel V (ω, z) of this transform satisfies the R-difference equation

(ω − z) V (ω, z) = D (Q) V (ω, z) + ∂RV (ω, z) . (2.45)

Of course, from a orthogonal polynomial theory point of view V (ω, z) is nothing more than
the generating function for the family of orthogonal polynomials under consideration.

The function V (ω, z) is useful for calculating many important physical quantities of the
system described by the Hamiltonian Hred.

First of all, note that using (2.44) and (2.45) one obtains

〈v ∣∣Hn
redz

〉 = ∫
R

V (ω, v)ωnV (ω, z) dσR,D(ω) = (z + D (Q) + ∂R)n ExpR (vz) . (2.46)

In particular putting n = 0 gives

ExpR (vz) =
∫

R

V (ω, v)V (ω, z) dσR,D(ω) (2.47)

which is the integral representation of the R-exponential function ExpR (vz). This function
satisfies the equation

∂RExpR (vz) = v ExpR (vz) . (2.48)

Let us recall that ExpR (v·) ∈ L2O (D, dµR) is the expression of the coherent state
holomorphically represented.

The evolution operator U (t) := eiĤred t acts on the function from L2
(
R, dσR,D

)
as

multiplication by the phase factors

U (t) ψ(ω) = eiωtψ(ω) (2.49)

and enables us to calculate the transition amplitudes between coherent states

〈v|U (t) z〉 =
∫

R

V (ω, v)eiωtV (ω, v) dσR,D(ω). (2.50)
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The vacuum–vacuum transition amplitude is also important for physicists and is given by

〈0|U (t) 0〉 =
∫

R

eiωt dσR,D(ω) =
∞∑
n=0

(it)n

n!
µn (2.51)

where µn is the nth moment of the measure dσR,D .
All the above shows that the measure dσR,D plays a significant role in the description of

our physical system. The construction of dσR,D is one of the most important problems which
has to be solved in order to recover the dynamics. In order to give an example (see [A]) of the
solution of this problem, let us recall the notion of a simple symmetric operator.

The Hilbert subspace H1 ⊂ H is a reducible subspace of the linear operator T : H −→ H
if H1 and H2 := H⊥1 are invariant subspaces for T and for the orthogonal projection
71 : H −→ H1 one has 71 (DT ) ⊂ DT . The symmetric operator T is simple if there
does not exist an irreducible subspace of T such that T|H1 has a selfadjoint extension in H1.

If the Jacobi matrix of the reduced Hamiltonian Hred is of type C then the series
∞∑
n=0

|Pn(ω)|2 and
∞∑
n=0

|Qn (ω)|2 (2.52)

are almost uniformly convergent on C. Thus the functionsA(ω), B(ω), C(ω) andD(ω)defined
by

A(ω) = ω

∞∑
k=0

Qk (0)Qk(ω)

B(ω) = −1 + ω

∞∑
k=0

Qk (0) Pk(ω)

C(ω) = 1 + ω

∞∑
k=0

Pk (0)Qk(ω)

D(ω) = ω

∞∑
k=0

Pk (0) Pk(ω)

(2.53)

are entire functions. If in additionHred is a simple and closed operator then the spectral measure
dER,D(ω) of its arbitrary selfadjoint extension Ĥred is localized at the zeros, ωi, i = 1, 2, . . . ,
of the function q(ω) = B(ω)t − D(ω) for some t ∈ R. The steps µi, i = 1, 2, . . . of the
measure dσR,D(ω) := 〈0|dER,D(ω)0

〉
satisfy the following conditions:

∞∑
i=1

1

µi

(
1 + ω2

i

) |q ′ (ωi)|2
<∞ (2.54)

∞∑
i=1

1

µi |q ′ (ωi)|2
= ∞. (2.55)

From the identity

|n〉 = Pn (Hred) |0〉 (2.56)

it follows that if the Jacobi matrix of Hred is of type D then Hred has a simple spectrum.
Conversely, one can prove (see [St]) that every selfadjoint operator H = H ∗ with a simple
spectrum may be represented in some orthonormal basis by the formula (2.22) where the Jacobi
matrix is of the type D.

Using (2.3)–(2.5) we can associate with it AR algebra with a suitable structural function
R. This fact indicates that algebras of this kind are important tools for investigating symmetry
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structures of physical systems with dynamics generated by Hamiltonians with a simple
spectrum.

In the next section we will describe the situation when neither coherent states nor the
kernel V (ω, z) do exist.

3. Integrable systems related to q-Hahn class polynomials

We will integrate the quantum systems related to AR and Hamiltonian Hred =: HAB algebras
with structural functions of the form

RAB (x) = (1− q) x
[
∂qη (x)− β (x) ∂qβ (x)

]
(3.1)

DAB (x) = (1− q) x∂qβ (x) (3.2)

where

β (x) = q (1− x) [(a0 (1− q)− b1) x + b1q]

(1− q)
[
(a1 (1− q)− b2) x2 + b2q2

] (3.3)

η (x) =
{ [

(a0 (1− q)− b1) x + b1q
2
]

[(a0 (1− q)− b1) x + b1q][
(a1 (1− q)− b2) x2 + b2q2

] [
(a1 (1− q)− b2) x2 + b2q3

]
+

b0 (1− q)

(a1 (1− q)− b2) x2 + b2q3

}
q3 (1− x)

(
1− q−1x

)
(1− q)2 (1 + q)

. (3.4)

These functions depend on five real parameters a0, a1, b0, b1 and b2. It will be shown later
that it is natural to introduce the following two polynomials:

A(ω) = a1ω + a0 (3.5)

B(ω) = b2ω
2 + b1ω + b0. (3.6)

It is clear from (3.3), (3.4) that the pairs of polynomials (A(ω), B(ω)) of degree one and
two, respectively, taken up to the common overall real factor c �= 0, parametrize the models
under consideration. The only condition we will impose on (A(ω), B(ω)) is the one given by
RAB (q

n) > 0 for any n ∈ N.
Analogous to the theory of classical orthogonal polynomials is a q-difference equation

(an analogue of Pearson’s equation [Su])

∂q (:B) (ω) = (:A) (ω) (3.7)

associated with (A(ω), B (ω)).
We will look for the solutions :(ω) of (3.7) which satisfy the boundary conditions

: (a) B (a) = : (b) B (b) = 0 (3.8)

for some fixed a, b such that −∞ � a < b � ∞. We thus have the so-called Pearson data
(A(ω), B(ω)) on the interval (a, b) ⊂ R.

Proposition 3.1. Let :(ω) be the solution of the q-Pearson equation (3.7) defined by
(A(ω), B(ω)) and satisfying (3.8). Then :(k) (ω) := :

(
qkω

)
B (qω) . . . B

(
qkω

)
is the

solution of Pearson q-equation (3.7) associated with the pair

A(k)(ω) := qkA(qkω) +
1− qkQk

1− q
∂qB(ω) (3.9)

B(k)(ω) := B(ω) (3.10)

where k ∈ N. If :(ω) satisfies the boundary conditions (3.8) then :(k)(ω) also satisfies (3.8).
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Proof. By straightforward calculation. �

Let L2 ([a, b] , dσAB) be the Hilbert space of square integrable functions with respect to
the measure

dσAB(ω) = : (ω) dqω (3.11)

where

dqω =
∞∑
k=0

(1− q) qk
[
bδ
(
ω − qkb

)− aδ
(
ω − qka

)]
dω (3.12)

is the Jackson measure on the interval [a, b]. It will be assumed that the weight function : (ω)
satisfies the Pearson q-equation (3.7) supplemented with the boundary condition (3.8).

On applying the orthonormalization procedure to the monomials {ωn}∞n=0 ⊂
L2 ([a, b] , dσAB) we obtain the system of orthonormal polynomials {Pn (ω)}∞n=0∫ b

a

Pn(ω)Pm(ω) dσAB(ω) = δnm (3.13)

which is uniquely determined by the pair (A (ω) , B(ω)) on the interval [a, b]. The polynomials
{Pn(ω)}∞n=0 are calledq-Hahn class polynomials, see [G-R,H]. Let us denote by

{
P̃n(ω)

}∞
n=0 the

monic orthogonal polynomial system (OPS) associated with {Pn(ω)}∞n=0 (i.e. P̃n(ω) = 1
αn
Pn(ω)

where αn is the coefficient of the highest power in Pn(ω)).

Theorem 3.1. If
{
P̃n(ω)

}∞
n=0 is the monic OPS corresponding to the Pearson data

(A(ω), B(ω)) then the family of polynomials{
1

[n] [n− 1] . . . [n− k]
∂kq P̃n(ω)

}∞
n=0

(3.14)

where

[k] := 1− qk

1− q

forms the monic OPS corresponding to
(
A(k)(ω), B(k) (ω)

)
with the same boundary

conditions (3.8).

Proof. For k � n− 2 we have∫ b

a

P̃n(ω)ω
kA(ω):(ω) dqω = 0. (3.15)

Using Leibnitz’s rule, (3.7) and (3.8) we obtain

0 =
∫ b

a

P̃n(ω)ω
k
(
∂qB:

)
(ω) dqω

= P̃n(ω)ω
kB (ω) :(ω)|ba −

∫ b

a

∂q
(
P̃n(ω)ω

k
)
B (qω) : (qω) dqω

= −
∫ b

a

∂q
(
P̃n(ω)ω

k
)
(B (ω)− (1− q) ωA(ω)) :(ω) dqω

= −
∫ b

a

∂qP̃n(ω) (qω)
k (B(ω)− (1− q) ωA (ω)) :(ω) dqω

−
∫ b

a

P̃n(ω) [k]ωk−1 (B(ω)− (1− q) ωA(ω)) : (ω) dqω.
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The degree of the polynomial

[k]ωk−1 (B(ω)− (1− q) ωA(ω)) (3.16)

is k + 1 < n, and from (3.9), (3.10) one finds that∫ b

a

∂qP̃n(ω)ω
k:(1)(ω) dqω = 0 (3.17)

for k � n − 2. This shows that the polynomials
{

1
[n]∂qP̃n(ω)

}∞
n=1 form a monic OPS for the

Pearson data
(
A(1)(ω), B(1)(ω)

)
given by (3.9) and (3.10). �

Since, for the rational function RAB (x) of (3.1) one has RAB (0) = 0 proposition 2.1
and it’s consequences as described in the previous section imply that for the case under
consideration the following statements are true:

(i) the operator HAB is selfadjoint and has a simple spectrum;
(ii) the coherent states do not exist for ARAB

;
(iii) the Hilbert space Hred is unitarily isomorphic to L2 ([a, b] , dσAB), with the isomorphism

given by (2.37).

Hence, the Hahn class polynomials {Pn(ω)}∞n=0 form an orthonormal basis inL2 ([a, b] , dσAB).
The measure dσAB is the expected value of the spectral measure dEAB in the vacuum state |0〉.

It is thus clear that the properties of Hahn class polynomials are crucial in obtaining a
better understanding of the physical systems corresponding to ARAB

algebra. The following
theorem describes some of the important properties of these polynomials.

Theorem 3.2 (Hahn). Fix some Pearson data (A(ω), B(ω)) on the interval [a, b] ⊂ R. Then
the following statements are equivalent.

(A) The family of polynomials
{
P̃n (ω)

}∞
n=0 forms the monic OPS with respect to

(A(ω), B (ω)).
(B) The polynomials are given by the Rodriques’ formula

P̃n(ω) = cn
1

:(ω)
∂nq
[
:(ω)B(ω)B

(
q−1ω

)
. . . B

(
q−(n−1)ω

)]
(3.18)

n ∈ N, where cn is a normalization constant.
(C) The polynomials

{
P̃n (ω)

}∞
n=0 satisfy the followingq-difference equation (Hahn equation):(

A(ω)∂q + B (ω) ∂qQ
−1∂q

)
P̃n (ω) = λnP̃n(ω) (3.19)

where

λn = a1 [n] + b2 [n] [n− 1] q−(n−1) n = 2, 3, . . .

λ1 = a1.
(3.20)

(D) Every polynomial of the system
{
P̃n(ω)

}∞
n=0 is given by

P̃n(ω) =
n−1∏
k=0

1

a
(k)
1 − b2 [−n + 1 + k]

×(A(0)(ω) + B(ω)∂qQ
−1
)
. . .
(
A(k−1)(ω) + B (ω) ∂qQ

−1
) · 1 (3.21)

where the linear functions

A(k)(ω) = a
(k)
1 ω + a

(k)
0 (3.22)

are defined in (3.9).
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(E) The polynomials of the system
{
P̃n(ω)

}∞
n=0 are related by the three-term recurrence

formula

P̃n+1(ω) + RAB

(
qn
)
P̃n−1 (ω) =

(
ω − DAB

(
qn
))
P̃n(ω) (3.23)

with the initial condition P0(ω) ≡ 1.

The proofs of the equivalence of A,B,C may be found in the original paper of Hahn [H].
The recurrence formula (3.23) is considered there without specification of the form of the
structural functions RAB,DAB . The only assumption made is that they are rational functions
of the parameter q. A complete proof of this theorem is given in appendix B.

From section 2 it follows that the problem of integration of the multi-boson system
described in L2 ([a, b] , dσAB) is reduced to the construction of the measure dσAB . According
to (3.11) the measure dσAB is given by the density function :(ω) which is a solution of the
q-difference Pearson equation (3.7). Let us therefore present all possible solutions of (3.7)
from the class of meromorphic functions. Using (3.5) and (3.6) we can rewrite (3.7) in the
form

:(ω) = B(qω)

B(ω)− (1− q)ωA(ω)
:(qω)

= b2q
2ω2 + b1qω + b0

(b2 − (1− q) a1) ω2 + (b1 − (1− q) a0) ω + b0
: (qω) (3.24)

and after standard calculations we obtain the classes of solutions detailed in Proposition 3.2
depending on the values of the parameters b2, b1, b0, a1, a0.

Proposition 3.2. One has the following subcases of the solutions of the q-difference Pearson
equation (3.7):

(i) If b0 �= 0 and b2 − (1− q)a1 �= 0, then

:(ω) =
(
qω

a
; q)∞( qωb ; q)∞(

ω
c
; q)∞(ωd ; q)∞ (3.25)

where a �= 0, b �= 0 are the roots of the polynomial B(ω) and c �= 0, d �= 0 are the roots
of the polynomial B(ω)− (1− q)ωA(ω).

(ii) If b0 �= 0 and b1 − (1− q)a0 �= 0 and b2 − (1− q)a1 = 0, then

:(ω) =
(
qω

a
; q)∞( qωb ; q)∞(

ω
c
; q)∞ (3.26)

where a �= 0, b �= 0 are roots of the polynomial B(ω) and c �= 0 is the root of the
polynomial B(ω)− (1− q)ωA(ω).

(iii) If b0 �= 0 and b1 − (1− q)a0 = 0 and b2 − (1− q)a1 = 0, then

:(ω) =
(qω
a
; q
)
∞

(qω
b
; q
)
∞

(3.27)

where a �= 0, b �= 0 are roots of the polynomial B(ω).
(iv) If b0 = 0, b1 �= 0 and b1 − (1− q) a0 �= 0 and b2 − (1− q) a1 �= 0 and b2 �= 0, then

:(ω) = ωr
(
qω

a
; q)∞

(ω
c
; q)∞ (3.28)

where a �= 0 is the root of the polynomial B(ω), c �= 0 is the root of the polynomial

B(ω)− (1− q)ωA(ω) and q−r =
∣∣∣ qb1

b1−(1−q)a0

∣∣∣.
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(v) If b0 = 0, b1 �= 0 and b1 − (1− q) a0 �= 0 and b2 − (1− q) a1 = 0 and b2 �= 0, then

:(ω) = ωr
(qω
a
; q
)
∞

(3.29)

where a �= 0 is the root of the polynomial B(ω) and q−r =
∣∣∣ qb1

b1−(1−q)a0

∣∣∣.
(vi) If b0 = b1 − (1− q) a0 = 0, b1 �= 0, b2 �= 0 and b2 − (1− q)a1 �= 0, then

(a) :(ω) = ωr

(
qω

a
; q)∞

(−ω; q)∞(−qω−1; q)∞ (3.30)

for q−r = qb1

b2−(1−q)a1
> 0;

(b) :(ω) = ωr
(
qω

a
; q)∞

(ω; q)∞(qω−1; q)∞ (3.31)

for −q−r = qb1

b2−(1−q)a1
< 0, where a �= 0 is the root of the polynomial B(ω).

(vii) If b0 = b1 = 0, b1 − (1− q)a0 �= 0 and b2 �= 0, then

(a) :(ω) = ωr (−ω; q)∞(−qω−1; q)∞(
ω
c
; q)∞ (3.32)

for q−r = q2b2

b1−(1−q)a0
> 0;

(b) :(ω) = ωr (ω; q)∞(qω−1; q)∞(
ω
c
; q)∞ (3.33)

for −q−r = q2b2

b1−(1−q)a0
< 0,

where c �= 0 is the root of the polynomial B(ω)− (1− q)ωA(ω).
(viii) If b0 = b1 = b1 − (1− q) a0 = 0, and b2 − (1− q)a1 �= 0 and b2 �= 0, then

:(ω) = ωr (3.34)

for q−r =
∣∣∣ q2b2

b2−(1−q)a1

∣∣∣.
Proof. The subcases (i)–(iii) are easily obtained by iteration. The points (iv)–(viii) are proved
by calculation of the Laurent expansion coefficient and application of Ramanujan’s identities
(see [G-R]). �

We can now determine the interval of integration in (3.13) and determine the conditions
on polynomials A(ω) and B(ω) such that the measure dσAB is positive (i.e. R(qn) > 0 for
n ∈ N). It will be convenient to express the conditions on A(ω) and B(ω) in terms of the roots
of the polynomials B(ω) and B(ω)− (1− q)ωA(ω).

Proposition 3.3. The measure dσAB is positive and the condition (3.8) is fulfilled if and only
if (in the notation and classification of proposition 3.2):

(i) The integration interval is [a, b] with a < 0 < b and c, d satisfies one of the following
conditions:

(α) c = d ,
(β) c < a and d > b,
(γ ) c, d < a,
(δ) there exists K ∈ N such that qK−1a < c, d < qKa,
(ε) c, d > b,
(ζ ) there exists K ∈ N such that qKb < c, d < qK−1b.

(ii) The integration interval is [a, b] with a < 0 < b and c < a or c > b.
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(iii) The integration interval is [a, b] with a < 0 < b.
(iv) This case splits into two subcases:

(1) For a > 0 the integration interval is [0, a] and c < 0 or c > a.
(2) For a < 0 the integration interval is [a, 0] and c < a or c > 0 and r has to be such

that ar > 0.

(v) This case splits into two subcases:

(1) For a > 0 the integration interval is [0, a].
(2) For a < 0 the integration interval is [a, 0] and r has to be such that ar > 0.

(vi) This case splits into two subcases:

(1) For a > 0 the integration interval is [0, a].
(2) For a < 0 the integration interval is [a, 0] and r have to be such that ar > 0.

(vii) In this case RAB(q
n) are not positive for large enough n.

(viii) In this case RAB(q
n) = 0 and DAB(q

n) = 0 for n ∈ N.

Proof. (i) The equation B(ω):(ω) = 0 is solved by aq−k+1 and by bq−k+1 for k ∈ N. For any
function f (ω) and any k, l ∈ N, using (3.11) and (3.12) one can obtain∫ aq−k+1

aq−l+1
f (ω) dσAB(ω) = 0 =

∫ bq−k+1

bq−l+1
f (ω) dσAB(ω) (3.35)

and ∫ b

a

f (ω) dσAB(ω) =
∫ bq−l+1

aq−k+1
f (ω) dσAB(ω). (3.36)

Hence the integration interval is [a, b]. The condition of positivity of dσAB(ω)∫ b

a

f (ω) dσAB(ω) > 0 for f > 0 (3.37)

is equivalent to

a:(qia) < 0 and b:(qib) > 0 for i = 0, 1, . . . . (3.38)

The continuity of : at ω = 0 gives a < 0 < b and the inequalities

:(qia) > 0 :(qib) > 0 for i = 0, 1, . . . (3.39)

which are solved by (α)–(ζ ). The proofs of (ii)–(viii) are similar to the one above. �

The above class of orthogonal polynomials, which we call the q-Hahn class polynomials,
contains, as a special case the families of orthogonal polynomials which are well known in the
literature. Using a very good paper [K-S] we obtain the following identification:

(1) Putting in (i) (β) d = 1 we have the big q-Jacobi polynomials. If in addition we put b = q

and c = a
q

we obtain the big q-Legendre polynomials.
(2) Putting in (ii) b < 1 and c = 1 we obtain the big q-Laguerre polynomials.
(3) Putting in (iii) b = 1 we obtain the Al-Salam–Carlitz I polynomials. If in addition we

assume a = −1 we obtain the Discrete q-Hermite I polynomials.
(4) Putting in (iv) (1) a = 1 we obtain the little q-Jacobi polynomials. If in addition we put

c = 1
q

and r = 0 we obtain the little q-Legendre polynomials.
(5) Putting in (v) (1) a = 1 we obtain the little q-Laguerre/Wall polynomials.
(6) Putting in (vi) (1) r = 0 we obtain the Alternative q-Charlier polynomials.
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We will now find the equations for the moments

µn =
∫ b

a

ωn dσAB (ω) (3.40)

of the measure dσAB .
From section 2 it is clear that once the moments are known one may determine many

important physical characteristic of the system under consideration.
Multiplying the q-difference Pearson equation (3.7) by ωnqn and using the Leibnitz rule

for the q-derivative we obtain the following three-term recurrence equation:

− [n] (b2µn+1 + b1µn + b0µn−1) = qn (a1µn+1 + a0µn) (3.41)

for n � 1, and

a1µ1 + a0µ0 = 0. (3.42)

The initial rule µ0 =
∫ b

a
dσAB (ω) for this recurrence can be calculated in a straightforward

way. In terms of the notation and classification introduced in proposition 3.2 we have

(i) µ0 = (1− q)(b − a)
(q; q)∞

(
q b
a
; q)∞(q a

b
; q)∞( abcd ; q)∞(

a
c
; q)∞( ad ; q)∞( bc ; q)∞( bd ; q)∞ (3.43)

(ii) µ0 = (1− q)(b − a)
(q; q)∞

(
q b
a
; q)∞(q a

b
; q)∞(

a
c
; q)∞( bc ; q)∞ (3.44)

(iii) µ0 = (1− q)(b − a)(q; q)∞
(
q
b

a
; q
)
∞

(
q
a

b
; q
)
∞

(3.45)

(iv) µ0 = (1− q)ar+1 (q; q)r(
a
c
; q)

r+1

(3.46)

(v) µ0 = (1− q)ar+1(q; q)r (3.47)

(vi)

(a) µ0 = (1− q)ar+1 (q; q)∞(−aqr+1; q)∞
(−a; q)∞

(− q

a
; q)∞ (3.48)

(b) µ0 = (1− q)ar+1 (q; q)∞(aqr+1; q)∞
(a; q)∞

(
q

a
; q)∞ . (3.49)

Let us note that replacing r in (iv)–(vi) by r + n n ∈ N, we obtain the moments µn for the
corresponding cases.

In order to consider cases (i)–(iii) let us introduce a real function µ satisfying the equation

(1− ω)B (Q)µ(ω) + (1− q) ωQA (Q)µ(ω) = 0. (3.50)

It is easy to check thatµ
(
qn+1

)
satisfies the recurrence equation (3.41) and henceµ(qn+1) = µn.

Re-expressing (3.50) in the form(
B (Q)

B
(
q−1Q

)− (1− q) q−1QA
(
q−1Q

) − ω

)
µ(ω) = 0 (3.51)

and the equation (3.7) in the form(
B (qω)

B(ω)− (1− q) ωA(ω)
−Q

)
:(ω) = 0 (3.52)
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one may observe some symmetry between the equation on : and the equation for the moment
function µ. After the substitution of the form Q→ qω and ω→ Q the operator from (3.51)
transforms into that of (3.52). Equation (3.51) as well as equation (3.52) can then easily be
solved.

For example, if we assume that B(1) = 0 then (3.51) can be written in the form

∂Rµ(ω) = µ(ω) (3.53)

where ∂R is the R-derivative. The function R is here given by

R(ω) = B(ω)

B(q−1ω)− (1− q)q−1ωA(q−1ω)
. (3.54)

Then one of the two linearly independent solutions of (3.51) is simply the R-exponential ExpR.
In this case it is given as the basic hypergeometric series

µ1(ω) = ExpR(ω) = 3B2

( 1
a
, 1, q

1
c
, 1
d

; q;ω
)

(3.55)

where a �= 1 is the root of the polynomial B(ω) and c and d are roots of the polynomial
B(q−1ω) − (1 − q)q−1ωA(q−1ω). The function 3B2 is defined in [G-R, K-S]. The second
solution µ2(ω) is related to µ1(ω) by the following formula (the Wronskian q-version):

µ2(ω)µ1 (qω)− µ2 (qω)µ1(ω) = xλ
(αq; q)∞
(ω; q)∞

(3.56)

where qλ = b2
b0

and α = (1−q)a1−b2

b0
.

Any solution µ(ω) is a linear combination of µ1(ω) and µ2(ω). We are then get the
following formula for the moments:

µn = µ
(
qn+1

) = c1µ1
(
qn+1

)
+ c2µ2

(
qn+1

)
(3.57)

where the constants c1 and c2 are determined by

µ0 =
∫ b

a

dσAB = c1µ1 (q) + c2µ2 (q) (3.58)

a0 (c1µ1 (q) + c2µ2 (q)) + a1
(
c1µ1

(
q2
)

+ c2µ2
(
q2
)) = 0. (3.59)
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Appendix A. The affine difference calculus

In this section we present the preliminary considerations related to the calculus generated by
the action of the affine group A+ on the real line. Let us define the linear representation of A+(
Lq,hϕ

)
(x) := ϕ (qx + h) (q, h) ∈ A+ = {(q, h) : q > 0, h ∈ R} (A.1)

acting on the functions ϕ from the F algebra. Since our consideration will be formal in its
character we do not impose any additional conditions on F.

According to [H] we introduce the derivative operator(
∂q,hϕ

)
(x) := ϕ (x)− ϕ (qx + h)

x − (qx + h)
(A.2)
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as a natural generalization of the q-derivative ∂q := ∂q,0 and of the difference derivative
∂h := ∂1,h.

The Leibnitz rule for the derivative ∂q,h is(
∂q,hϕψ

)
(x) = (∂q,hϕ) (x) ψ (x) +

(
Lq,hϕ

)
(x)

(
∂q,hψ

)
(x) (A.3)

There is also the following equivariance property:

L−1
c,t ◦ ∂q,h ◦ Lc,t = c ∂q,ch+(1−q)t (A.4)

which enables us to reduce (q, h)-analysis to q-analysis. We have, for example

∂q,h = L−1
1, h

1−q
◦ ∂q ◦ L1, h

1−q
. (A.5)

Let us now solve the equation

∂q,hϕ = : (A.6)

for the given function : ∈ F. In the order to do this, we apply the operator Lk
q,h to (A.6) and

find that

Lk
q,hϕ (x)− Lk+1

q,hϕ (x) = qk [(1− q) x − h] Lk
q,h: (x) . (A.7)

Summing up both sides of identity (A.7) with respect to k we get

ϕ (x)− ϕ
(
x∞
) = ∞∑

k=0

[x − (qx + h)] qk:

(
qkx +

1− qk

1− q
h

)
(A.8)

where

x∞ = lim
k→∞

(
qkx +

1− qk

1− q
h

)
= h

1− q
. (A.9)

Equation (A.8) justifies the following definition of the (q, h)-integral:∫
q,h

: (x) =
∫ x

x∞
: (t) dq,ht :=

∞∑
k=0

[x − (qx + h)] qk:

(
qkx +

1− qk

1− q
h

)
. (A.10)

The (q, h)-integral operator is the right inverse of the (q, h)-derivative operator

∂q,h ◦
∫
q,h

= i d (A.11)

and, moreover,∫
q,h

◦∂q,h = i d − δ1,∞. (A.12)

The operator δ1,∞ is an idempotent operator defined by(
δ1,∞ϕ

)
(x) = ϕ

(
x∞
)

(A.13)

projecting the function onto the constants.
As in (A.5) we have∫

q,h

= L−1
1, h

1−q
◦
∫
q

◦L1, h
1−q

(A.14)

which reduces (by the translation authomorphism L1, h
q−1

) the (q, h)-integral to the Jackson

integral
∫
q
= ∫

q,0. The integration on the interval [a, b] can be defined by∫ b

a

: (t) dq,ht =
∫ b

b∞
: (t) dq,ht −

∫ a

a∞
: (t) dq,ht. (A.15)

If q → 1, the calculus presented above corresponds to the difference calculus. For h→ 0
one obtains a q-difference calculus. The differential calculus will be obtained when q → 1,
h→ 0.

Let us finally mention that the identities (A.5) and (A.14) enable us to reduce (q, h)-
calculations to q-calculations. This property motivates us to discuss q-analysis.
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Appendix B. Proof of theorem 3.2

A⇔ B. The monic OPS {Pn(ω)}∞n=0 is uniquely defined by the weight function :(ω) on the
interval [a, b]. In order to prove the equivalence of the properties A and B it is sufficient to
show that the system of polynomials defined by (3.18) is a monic OPS. In order to do that let
us reexpress the function

Fk (ω; n) := ∂kq
[
: (ω)B(ω)B

(
q−1ω

)
. . . B

(
q−(n−1)ω

)]
(B.1)

in the following way:

Fk (ω; n) = :(ω)B (ω)B
(
q−1ω

)
. . . B

(
q−(n−1−k)ω

)
Rk,n (ω) k = 0, 1, . . . , n− 1 (B.2)

Fn (ω; n) = :(ω)Rn,n(ω) (B.3)

where Rk,n(ω) is a polynomial of degree not greater than k � n. These polynomials satisfy
the recurrence formula

Rk+1,n(ω) = A(ω)Rk,n (qω) + B
(
q−(n−1−k)ω

)
∂qRk,n (ω)

+
B
(
q−(n−1−k)ω

)− B (ω)

(1− q) ω
Rk,n (qω) (B.4)

for k = 0, 1, . . . , n− 1 with the initial condition R0,n(ω) ≡ 1.
For k < n, applying (B.2) we have∫ b

a

q
k(k+1)

2 ωkP̃n(ω): (ω) dqω = cn

∫ b

a

q
k(k+1)

2 ωk∂nq F0 (ω; n) dqω

= cnq
k(k+1)

2 ωkFk−1 (ω; n) |ba − cn [k]
∫ b

a

q
k(k+1)

2 ωk−1∂n−1
q F0 (ω; n) dqω

= cnq
k(k+1)

2 ωk:(ω)B(ω)B
(
q−1ω

)
. . . B

(
q−(n−1−(k−1))ω

)
Rk−1,n(ω)|ba

−cn [k]
∫ b

a

q
k(k+1)

2 ωk−1∂n−1
q F0 (ω; n) dqω

= · · · = (−1)k [k] [k − 1] . . . [1] cn

∫ b

a

∂n−kq F0 (ω; n) dqω

= (−1)k [1] . . . [k] :(ω)B(ω)B
(
q−1ω

)
. . . B

(
q−(n−1−(k−1))ω

)|ba = 0. (B.5)

This shows that the polynomials P̃n(ω), n ∈ N∪{0} form an OPS. With the correct normalizing
constants cn one can obtain the monic OPS.

B ⇒ C. We have proved the validity of the q-Rodrigues formula for any Pearson data and
thus by theorem 3.1 we have

1

[n]
∂qP̃n (ω) = c

(1)
n−1

1

:(1)(ω)
∂n−1
q

[
:(1)(ω)B(1)(ω)B(1)

(
q−1ω

)
. . . B(1)

(
q−(n−2)ω

)]
(B.6)

for the Pearson data
(
A(1) (ω) , B(1)(ω)

)
given by (3.9) and (3.10). Using now the equality

Q:(ω)B(ω) . . . B
(
q−(n−1)ω

) = :(1)(ω)B(1) (ω) B(1)
(
q−1ω

)
. . . B(1)

(
q−(n−2)ω

)
(B.7)

and substituting (B.6) into (3.18) we find

P̃n(ω) = cn
1

: (ω)
∂nq
[
Q−1:(1)(ω)B(1) (ω) B(1)

(
q−1ω

)
. . . B(1)

(
q−(n−2)ω

)]
= cnq

−(n−1) 1

: (ω)
∂qQ

−1∂n−1
q

[
:(1)(ω)B(1) (ω) B(1)

(
q−1ω

)
. . . B(1)

(
q−(n−2)ω

)]
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= cnq
−(n−1) 1

: (ω)
∂qQ

−1 [n] :(1)(ω)

c
(1)
n−1

∂qP̃n (ω)

= cn

c
(1)
n−1

q−(n−1) [n]
1

: (ω)
∂q:(ω)B (ω)Q−1∂qP̃n(ω)

= cn

c
(1)
n−1

q−(n−1) [n]
[
A(ω)∂qP̃n(ω) + B(ω)∂qQ

−1∂qP̃n(ω)
]
. (B.8)

We have proved (3.19). In order to show (3.20) we compare the coefficients of xn on both
sides of (3.19). Additionally we have the formula

c
(1)
n−1

cn
= [n] q−(n−1)λn (B.9)

for the normalizing coefficients. Later we will use (B.9) for the calculation of cn.

C ⇒ B. The proof is one of induction. It is easy to see that for n = 1 (3.18) follows
from (3.19). Let us assume that it is true for n− 1. We now prove it for n.

From our assumption and theorem 3.1 we have
1

[n]
∂qP̃n (ω) = c

(1)
n−1

1

:(1)(ω)
∂n−1
q

(
:(1)(ω)B(ω) . . . B

(
q−(n−2)ω

))
. (B.10)

Using (3.18) and proposition 3.1, we obtain a thesis after simple calculations.

C ⇔ D. From (3.20) we have

P̃n(ω) = [n]

λn

(
A(ω) + B(ω)∂qQ

−1
) 1

[n]
∂qP̃n(ω). (B.11)

According to theorem 3.1, the polynomials
{

1
[n]∂qP̃n (ω)

}∞
n=0 form the monic OP with respect

to
(
A(1) (ω) , B(1)(ω)

)
given by (3.9) and (3.10). We can thus apply formula (B.11) with(

A(1) (ω) , B(1)(ω)
)

to the polynomial 1
[n]∂qPn(ω). Repeating this procedure n-times and using

the formula

λ(k)n = a
(k)
1 [n] + b2 [n] [n− 1] q−(n−1) (B.12)

where a(k)1 is defined by (3.22) we obtain (3.21).

B ⇒ E. In order to prove that the recurrence formula (3.23) holds we use the identity

∂kq
[
:(ω)B (ω)B

(
q−1ω

)
. . . B

(
q−(n−1)ω

)]
= :(ω)B (ω)B

(
q−1ω

)
. . . B

(
q−(n−1−k)ω

)
Rk,n(ω) (B.13)

where the polynomial Rk,n(ω) satisfies the recurrence equation (B.4). From equation (B.13)
and the Rodrigues formula one has

P̃n(ω) = cnRn,n (ω) . (B.14)

Let us denote by αk , βk and γk the three highest coefficients of the polynomial

Rk,n(ω) = αkω
k + βkω

k−1 + γkω
k−2 + · · · . (B.15)

After substituting (B.15) into (B.14) and comparing the coefficients of the monomials ωk+1,
ωk and ωk−1 we obtain the following system of recurrence equations:

αk+1 = (a1 − b2 [−2n + 2 + k]) qkαk
βk+1 = (a0 − b1 [−n + 1]) qkαk + (a1 − b2 [−2n + 3 + k]) qk−1βk

γk+1 = b0 [k]αk + (a0 − b1 [−n + 2]) qk−1βk + (a1 − b2 [−2n + 4 + k]) qk−2γk

(B.16)
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which can be solved by iteration as follows:

αk = q
k(k−1)

2

k−1∏
l=0

(a1 − b2 [−2n + 2 + l]) (B.17)

βk = [n]

qn−1
· a0 − b1 [−n + 1]

a1 − b2 [−2n + 2]
· αk (B.18)

γk =
(1− qn)

(
1− qn−1

)
(1− q)2 (1 + q)

× (a0 − b1 [−n + 2]) (a0 − b1 [−n + 1]) + b0 (a1 − b2 [−2n + 2])

(a1 − b2 [−2n + 2]) (a1 − b2 [−2n + 3])
αk. (B.19)

Thus for the monic polynomial

P̃n(ω) = ωn + β
(
qn
)
ωn−1 + γ

(
qn
)
ωn−2 + · · · (B.20)

we find that the coefficients

β
(
qn
)

:= βn

αn

γ
(
qn
)

:= γn

αn

are given by the rational functions (3.3) and (3.4). Using the three-term recurrence
relation (3.24) and (B.15) we obtain the formulae (3.1) and (3.2) for the structural functions
R and D.

E ⇒ A. The recurrence formula (3.23) rewriten for the orthonormal polynomials {Pn(ω)}∞n=0
takes the form (2.28) which means that the Hamiltonian Hred (2.22) has a Jacobi matrix of type
D. Thus (see [A]) this Hamiltonian is essentially selfadjoint and has a simple spectrum. This
shows that there is a unique measure dσAB such that∫ b

a

Pn(ω)Pm(ω) dσAB(ω) = δnm. (B.21)
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